PEEK pipes / tubes and rings

Tubes made from high performance polymer PEEK find their way into many different industries and applications, especially in the oil and gas or semiconductor industry. PEEK is often the choice of material due to its temperature, chemical and creep resistance combined with its thermal stability and compressive strength.

Required dimensions are as much of a driver as the application itself. Ensinger specialises in various processing methods to achieve the capability of producing PEEK pipes, tubes and rings for a wide range of dimensions. In our production facilities all over the world, we produce PEEK pipes and rings by using extrusion, compression moulding, rotational moulding process (often referred to as spin cast or spin moulding) and injection moulding. Compression moulding allows us to offer sizes with thicker cross sections and wall thicknesses, whereas spin molding provides the flexibility of offering billets that will perform in high temperature sealing applications, in a wide range of sizes that can be tailored to the customer’s needs. Moreover, we can customise the material blend for pipes and rings through adding suitable fillers and additives in addition to adjusting the OD and wall thicknesses to fit most oil & gas applications needs.

With almost 4000 different combinations of modification, production method and dimension, TECAPEEK offers the best diversity for the industries demand. Our PEEK pipes and PEEK rings are available with wall thicknesses between
5 to 180mm and outer diameters of up to 2200 mm. Lot sizes range from just one single piece e.g. for prototyping projects up to industrial size lots. With a wide range of tube sizes in stock, in addition to others being available on a custom order basis, our PEEK is a strong leader in the industry.

PEEK tube selector

Select from more than 4000 combinations by using the PEEK tube selector. You can select four PEEK plastic modifications and your exact size range of PEEK pipes and rings. As a result you'll learn more on availability, minimum order quantity and the production method. The best match will tell you which tube is closest to your desired dimension, so that you can reduce material waste when machining the material.

A wide range to select from - peek unfilled and reinforced

PEEK pipes, tubes and rings are available unfilled (TECAPEEK natural) and in the filled modifications, TECAPEEK GF30 natural (PEEK glass fibre reinforced) or TECAPEEK CF30 black (carbon filled PEEK).  For special bearing applications that demand certain frictional properties, PEEK PVX (TECAPEEK PVX black) is the suitable choice.

A wide range of applications especially within the offshore sector, where high temperatures, high mechanical forces and resistance to aggressive chemicals are essential, require a sour gas ageing test to confirm the qualification of the material for use in such harsh environments.
Our PEEK plastic, produced by the extrusion process, meets the strict requirements of both ISO 23936-1 and NORSOK M-710 that is required for sour gas and other challenging environments throughout the natural gas and petroleum industry.

Extrusion is a method to produce theoratically infinite long stock shapes based on thermoplastic polymers. Cross sections are determined by the tool that is utilized. For stock shapes from Ensinger, the predominate cross sections are pipes / tubes, rods and plates. From a process view the polymer is molten in the extruder unit and homogenized before it is pressed through the tooling to flange in to the desired stock shape form.

Extrusion is very cost effective at long runs for medium to high volumes. Standard sizes do not create additional tooling cost and have a very good availability. Physical properties of an extruded material are comparable to properties of injection moulded stock shapes. Heavy cross sections can also be realised with this method.
Unlike extrusion, with compression moulding the utilized thermoplastic polymer is poured into a heated mould cavity. By applying heat and pressure the polymer is then compressed into the mould where the dimensions of this tooling determines the dimensions of the final stock shape.

Only very low amounts of scrap will accumulate which makes this process quite cost effective. This material offers more homogenious physical and mechanical properties and shows less mould in stresses than conventional injection moulded material. Compression moulding is suitable for low to medium order sizes, the MOQ basically starts with one piece per cycle. An additional advantage is that it has a relative short lead time and its capability to achieve rather big dimensions (tools for >100 inch or >2450 mm can be made available). Good variability of blends and modifications are available.

In this process a molten and homogenized thermoplastic polymer base (coming from an extrusion unit) is forced into a mould cavity by injection. During a defined cooling phase the polymer solidifies and flanges the geometry of the tool, then it is ejected by simply opening the tool.

Injection moulding is a method suitable for mid-high volume orders but best cost efficiency can be achieved with high volumes, especially as high tooling costs need to be considered if a non-standard shape is required. Injection moulding is best being used for rather small stock shape forms as large parts aren´t cost effective. Production speed itself is very high and lead times are short. Good variability of blends and modifications are available. Injection moulded materials offer the highest mechanical properties mainly with filled modifications.

Spin Moulding is an interesting method to produce rather big yet thin walled pipes and rings from polymers such as PEEK. Outer diameters of the final product are limited by the tool that is used. Approproiate amounts of polymer is then added into the heated tool while it spins around its roll-axis. Once the material melts it snuggles to the wall of the tool and builds up the desired wall thickness.

Spin moulding is suitable for low to medium order sizes where the MOQ can be one piece only. Unlike extrusion, this method is very flexible with regards to wall thickness and production speed is about five times faster comparred to compression moulding. Due to the open inner diameter, voids, cracks and inclusions are practically eliminated. Spinn moulded materials shows the lowest residual stress behaviour of all methods used in the Ensinger world, therefore, only short annealing times are needed. Also interesting is the very low waste accumulation and the suitability for near net shapes. Good variability of blends and modifications are available.

Typical PEEK pipe applications

  • Back up rings are normally used in high pressure environments in combination with an O-ring or seal. TECAPEEK back up rings have a high compressive strength and thermal stability. In conjunction with temperature, chemical and fatigue resistance, the back up ring material functions as an added insurance when spikes in pressure can cause the O-ring to fail and the stronger, tougher, back up ring is used to help prevent failure.
    Backup rings
  • Peek seals are used in areas that require the control of things for example like liquids and natural gasses to prevent leakage. There are several different applications and areas that PEEK seals can be found in such as valves, compressors, packers and blow out preventers. The high-performance thermoplastic polymer PEEK is perfectly suited for this sealing applications due to its excellent properties such as high temperature tolerance, good mechanical and chemical resistance and its hardness and rigidity.
  • Valve seats are used in environments to control the flow of fluids, allowing them to flow freely and also have the ability to close to prevent the flow. TECAPEEK is a commonly used material and considered premium in valve seats applications due to its excellent chemical and thermal properties. The high temp polymer remains resistant despite the continuous exposure of hot water and steam and increases the torque requirement of the valve due to its rigidity.
  • PEEK tubing can be used in various industries including the Energy/Oil & Gas industry. Produced in a wide range of sizes and by several different processes, PEEK tubing can be used in many applications such as spacers, acting as a protective coating or sheath, as well as pipes for the transfer of high temperature fluids. PEEK tubing has one of the highest strength-to-weight-ratios and moreover the required strength to resist continuous use at HPLC pressure. Therefore, PEEK tubing has become a popular alternative for stainless steel tubing